Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure.

نویسندگان

  • Corrie Spoon
  • W J Moravec
  • M H Rowe
  • J W Grant
  • E H Peterson
چکیده

Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady state stiffness of utricular hair cells depends on macular 4 location and hair bundle structure 5 6

Steady state stiffness of utricular hair cells depends on macular 4 location and hair bundle structure 5 6 Corrie Spoon1, W. J. Moravec2, M. H. Rowe2, J. W. Grant1, E. H. Peterson2 7 8 9 1 Department of Engineering Science and Mechanics and Department of Biomedical 10 Engineering, Virginia Tech, Blacksburg, VA; Department of Biological Sciences and 11 Neuroscience Program, Ohio University, Athe...

متن کامل

Architecture of the mouse utricle: macular organization and hair bundle heights.

Hair bundles are critical to mechanotransduction by vestibular hair cells, but quantitative data are lacking on vestibular bundles in mice or other mammals. Here we quantify bundle heights and their variation with macular locus and hair cell type in adult mouse utricular macula. We also determined that macular organization differs from previous reports. The utricle has approximately 3,600 hair ...

متن کامل

Autocorrelation analysis of hair bundle structure in the utricle.

The ability of hair bundles to signal head movements and sounds depends significantly on their structure, but a quantitative picture of bundle structure has proved elusive. The problem is acute for vestibular organs because their hair bundles exhibit complex morphologies that vary with endorgan, hair cell type, and epithelial locus. Here we use autocorrelation analysis to quantify stereociliary...

متن کامل

Hair bundle heights in the utricle: differences between macular locations and hair cell types.

Hair bundle structure is a major determinant of bundle mechanics and thus of a hair cell's ability to encode sound and head movement stimuli. Little quantitative information about bundle structure is available for vestibular organs. Here we characterize hair bundle heights in the utricle of a turtle, Trachemys scripta. We visualized bundles from the side using confocal images of utricular slice...

متن کامل

Utricular afferents: morphology of peripheral terminals.

The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 6  شماره 

صفحات  -

تاریخ انتشار 2011